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ABSTRACT 

The problem of potential flow around two-dimensional 

airfoils is solved by using a new singular integral method. The 

potential flow equations for incompressible potential flow are 

written in a singular integral equation. This equation is solved at 

N collocation points on the airfoil surface. A unique feature of 

this method is that the airfoil geometry is specified as an 

independant variable in the exact integral equation. 

Compared to other numerical methods, the present 

calculation procedure is much simpler and gives remarkable 

accuracy for many body shapes. An advantage of the present 

method is that it allows the inverse design calculation and the 

results are extremely accurate. Compared to other previous 

calculations, the present design solution is simpler, more accurate 

and does not use an iteration procedure. 
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CHAPTER 1 

REVIEW OF EXISTING METHODS 

1.1 lntroduct ion 

A potential flow is one which is inviscid and 

irrotational. The irrotational condition implies that the 

velocity can be defined in terms of a potential function by: 
4 

U=V$ (1 -1 1 
When the problem involves a prescribed free stream flow over 

an arbitrary body, the velocity is commonly expressed as: 
* +  + 
u=u + q ,  

00 

where U, is the onset flow present when the body is not 

present and q is the disturbance velocity. In most cases U, is 

a uniform flow defined as parallel to the x-axis. When the flow 

is potential and incompressible, the Navier-Stokes equations 

reduce to the following equation: 

V2@= 0 ( 1 *3) 

The flow field is completely determined by kinematics, 

when the appropriate boundary conditions are specified. On the 

surface of the airfoil, the vector velocity is tangent to the 

surface and the disturbance velocity vanishes as the distance 

from the airfoil increases to infinity. 

When the flow is not symmetrical, we need an additional 

1 
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condition which is given by the Kutta requirement. The Kutta 

condition states that the flow cannot go around the sharp 

trailing edge, but must leave the airfoil so that the upper and 

lower streams join smoothly at the trailing edge. This 

condition determines a unique value of the circulation. 

There are many techniques for calculating the 

incompressible potential flow around two-dimensional bodies; 

this chapter reviews several methods which have some 

similarity to the current singular integral method. 

1.2 Thin-Airfoil Theory 

The thin-airfoil theory uses several approximations in 

order to calculate the surface pressure distribution. The 

method of calculation is convenient for a rapid estimation of 

the velocity or pressure distribution over the airfoil. This 

theory had its beginnings in the early days of Thermodynamics 

with Munk [I], Birnbaum [2] and Glauert [3]. 

We assume that the airfoil is thin and that the camber 

and angle of attack are small. This suggests that the 

disturbance velocity is small compared to the free steam 

velocity U, . Since at the stagnation point this statement is 

evidently not true, the calculation is useful in regions which 

exclude this point. 

The differential equation governing the flow field is: 
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3 

V2$= 0 (1 -4) 

The boundary condition along the mean camber line given by, 

where q is the equation of the camber line, U, is the free 

stream velocity and a is the angle-of-attack. The far stream 

condition can be stated as: 

3 3 + o 
3% ' by 

at infinity. 

The solution for the flow field is obtained by superposing 

three problems: 

Problem 1 represents a thin symmetrical airfoil at zero angle 

of attack. 

Problem 2 represents the steady flow past a cambered airfoil 

of zero thickness at zero angle of attack 

Problem 3 represents a fiat plate airfoil at an angle of attack. 

We first consider the problem of a thin symmetrical 

airfoil at zero angle of attack. The effect of thickness can be 

represented by a continuous distribution of sources along the 

x-axis. The disturbance potential can then be expressed by the 

following integral equation: 
1 - 

(1 5) 
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4 

The proper source distribution denoted by q( 6 ) is determined 

by the surface boundary condition which gives: 

For the problem of the cambered airfoil of zero thickness 

we use a suitable distribution of vortices along the X-axis of 

the airfoil. The disturbance potential is given at the field point 

(x , y) by the integral relation: 

Again the boundary conditions allow us to evaluate the axial 

distribution of vorticity. 

The flow field over a flat plate airfoil is solved by using 

a vortex distribution. The suitable distribution of vorticity is 

given as a solution of the following integral equation: 
I 

After some mathematical manipulation, we obtain the vortex 

distribution: 

The relationship between x and 8 is given by: 
I 
2 

x = - ( I  + c o a l  

(1.10) 

(1.11) 

(1.1 2) 
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The general solution for the flow over a thin airfoil is finally 

obtain by superposing the three previous calculations. This 

developments come from reference [4] 

1.3 Surface Distributions for Potential Flow 

The principle of this method is to sum sources, sinks, 

vortices or dipoles on the surface of the airfoil to form a flow 

field that satisfies the boundary conditions. The surface of the 

airfoil is approximated by N elements or panels with N points 

at which the singularity is to be evaluated. Each singularity is 

superposed with the uniform free stream and the resulting flow 

velocity must be tangent to each N elements of the airfoil at 

the points where the singularity is to be evaluated. All surface 

singularity methods, sometimes called panel methods, use the 

zero normal velocity on the surface to derive an integral 

equation for the singularity distribution. The evaluation of the 

proper distribution basically solves the problem and allows the 

computation of the pressure distribution. The most 

straightforward form to formulate this method is to use 

Green's theorem. The potential at any point P exterior to the 

airfoil can be expressed as: 



6 

(1.13) 

n denotes the normal to the surface at point q. The potential 

at a point p on the surface is given by: 

(1.14) 

Since b$/bnq is prescribed, this is an integral for $(r). This 

equation represents a Fredholm integral equation, whose Kernel 

is given by: 

(1.15) 

However, the formulation that is more convenient is given by a 

surface distribution of unknown source strength 

(1.1 6) 

This type of distribution gives a unique solution for the 

potential flow. Applying the boundary condition, we obtain the 

following integral equation: 

n . U  (1.17) 
2 n o ( p ) - ! 1 4  S P  an r(p,q) ] o ( p ) d s = -  P o 0  
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This is a Fredholm integral equation of the second kind whose 

kernel is: 

These equations are the basic formulation of the surface source 

density method to solve the problem of potential flow. The 

accuracy of this method is determined by the number of the 

elements used to approximate the body surface. For usual 

shapes, such as a two dimensional airfoil, 30 to 60 elements is 

sufficient. Usually the only interest is in the calculation of the 

surface velocity. The potential off the airfoil needs not to be 

calculated. 

Lift is deduced by means of a vorticity distribution on 

the surface. A conventional airfoil has a sharp trailing edge 

therefore for each angle of attack, there is a unique circulation 

that makes the potential flow velocity finite at the trailing 

edge. This condition is known as the Kutta condition. One 

technique is to put a vortex surface distribution on the surface 

of the airfoil. This method was proven to give the most 

accurate solution. The votex distribution would take the same 

N elements used for the source distribution and all the 

components will be summed up over the elements. The 

variation of the strength of the vortices is arbitrary, however a 

constant strength gives the most accurate solution. Another 

(1.18) 
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technique is to place the vorticity distribution on the airfoil 

mean line. In this case only one vortex singularity needs to be 

placed on the mean line. This formulation has been reviewed by 

Maskew and Woodward [5] 
a 

This method of solving the potential flow using a 

surface distribution is general and can be applied to any kind of 

bodies (two- dimensional, axisymmetric and even three 

dimensional shapes). Because of its versatility and accuracy, it 

has become the most popular technique for computing potential 

flows. 

1.4 

This developments come from references [6] and [7]. 

Conformal Transformations 

Conformal transformations solve the potential flow field 

by using a complex transformed plane. The method simplifies 

the calculation of the flow field by solving for the flow field 

over a circle in the transformed plane which corresponds to the 

flow over a complicated airfoil shape in the real plane. 

Laplace's equation in the real plane transforms into Laplace's 

equation in the virtual plane and also the boundary conditions 

remain the same in both planes. The transformation maps 

points from the real plane using complex variables: 

Z = H + i Y  

into points on a transformed plane: 

c = c + i q  

(1.19) 

(1.20) 
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The mapping is given by a function of the type: 

. z = e +  r1/c+r2/c2 + r3/c3 + ... (1.21) 

where ri are real constants. The problem in the transformed 

plane reduces to the flow field over a cylinder. The exact 

solution is found by using a doublet, a uniform free stream and 

a value for the circulation which ensures the uniqueness of the 

solution. The solution is then transformed back into the real 

plane to give the pressure distribution on the airfoil. This 

method is limited to special airfoil profiles for which a 

conformal transformation exists. - 

The most important conformal transformation is the 

Joukowsky transformation which leads to a family of airfoils 

known as Joukowsky airfoils. The Joukowsky transformation 

has the form: 

Z = < + r/c 
and the inverse transformation used to transform back the 

solution into the real plane is given by: 
1 

In the transformed plane the center of the circle is displaced 

from the origin and the X-axis displacement is proportional to 

the thickness of the Joukowsky airfoil while the Y-axis 

(1.22) 

(1.23) 
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displacement is determined by the camber. There are an 

infinite number of flows over a circle and the unique solution 

is found by invoking the Kutta condition which determined the 

position of the rear stagnation point on the circle. Another 

important aspect of the transformation is that at infinity the 

flows have exactly the same form and the angle of attack is 

also the same in either plane. More details about the Joukowsky 

transformation can be found in the reference [8]. Real airfoils 

are not Joukowsky airfoils, however the study of Joukowsky 

airfoil shapes give general trends for ideal flow over real 

airfoil shapes of similar thickness and camber. 

10 



CHAPTER 2 

MATHEMATICAL FORMULATION 

AND NUMERICAL ALGORITHM 

2.1 lntroduct ion 

The problem of predicting the pressure distribution about 

a two-dimensional airfoil has received considerable attention 

from various investigators. This study uses a recently 

developed [9] singular integral technique to solve the potential 

flow field over a two-dimensional airfoil. The calculation 

technique bears some resemblance to conventional singular 

integral methods as it reducesthe formulation of the 

two-dimensional flow problem to the solution of an integral 

equation. However, this method has significant differences 

from other methods. It derives the integral equation by using a 

Fourier transform. Then, introducing a Taylor series expansion, 

the inverse transform is evaluated analytically. An important 

aspect is that the surface geometry of the airfoil appears 

explicitly in the integral equation. The advantage of this 

technique is that the formulation allows the inverse 

calculation to be easily performed, Le. given a desired 

pressure distribution, the airfoil geometry can be found 

without iteration . 

Two main computer programs have been developed for 

11 
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two-dimensional airfoils. The first program will compute a 

pressure distribution for arbitrary combinations of airfoil 

geometry and angle of attack while the second program will 

calculate an airfoil profile for a given pressure distribution. 

The programs were shown to be in good agreement with known 

results. The numerical results will be presented in a 

subsequent chapter. This chapter descibes the mathematical 

development and numerical solution associated with this new 

formulation of the potential flow problem. 

2.2 Formulation of the Eauat ions 

Consider a symmetrical airfoil of moderate thickness at 

some angle of attack to a free stream. The outer flow is 

two-dimensional, inviscid and irrotational. As shown in Figure 

2.1, the Cartesian coordinate system is taken with the origin at 

the center point of the airfoil chord. The length of the airfoil 

chord is taken using non-dimensional variables to be equal to 2. 

The outer free stream at infinity U, is inclined at an angle of 

incidence a relative to the x-axis. The equation of the airfoil 

relative to the axis system is denoted by: 

Y=nl<X) (2.1 1 
We introduce a disturbance velocity vector q (H,Y) due to the 

presence of the airfoil and we write: 
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In the following analysis, U, represents a constant vector. In 

non-dimensional form, the magnitude of U, is equal to 1. In a 

similar way, we introduce a disturbance potential for the 

disturbance velocity and we have: 
L 

+=+,+ 4 

It should be noted that the disturbance potential does not need 

to be small in the following formulation. 

The first step in the formulation is to divide the 

problem into an upper and lower plane as shown in Figure 2.2. 

The mathematical problem will then be solved independently 

for the lower and upper plane. In terms of the potential the 

flow field is described by the following mathematical 

formulation for the upper plane: 

Differential equation 
2 2 b+b=() 

a x  ay2 2 
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Surface boundary condition 

U I X )  --< x <  - 1  

Far stream condition 

9' (x,y) equal as the distance from the 

airfoil increases to infinity 

For the lower plane a similar set of equations applies and the 

potential function will be denoted by &x,y) . For symmetrical 

flows with a symmetrical airfoit only the upper half needs to 

be computed. However, in the general case, both the upper and 

lower plane are independently calculated. The parameters, 

Vu(%) and Mu(%) are the y-components of the velocities along 

the centerline upstream and downstream of the airfoil 

respectively. For a symmetrical flow lJu(x) and Wu(x) are 

zero. For nonsymmetrical flows, we require that ( Vu(%) , 
Mu(%) and ( V I ( % )  , MI(%) match along the centerline, this 

ensures a unique solution and in effect replaces the usual Kutta 

condition. 

Finally we rewrite the mathematical formulation in 

terms of the disturbance potential and the disturbance upwash 

and downwash velocities defined by: 

15 
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U(X)  = sin a + u (x)  

L 

W(x) = sin a + w  (x)  

The mathematical statement of the disturbance potential is 

given below for the upper plane: 

where, 

f"(x) = 

16 

2 2  
k a n d  ?!!L + O  as x + y  +- 
bX bY 

A similar set of equations exists for the lower plane. 

2.3 Solution bv Fourier Transform 

In order to find a solution for the above mathematical 

equations we use the Fourier Transform in the x-direction 

assuming that the function cp satisfies the Dirichlet conditions . 
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in every finite interval. The Fourier transform pair is given by: 
00 

I -isx 
(2.1 0) 1 

@ (s,y) = - $(x,y) e dx 
fi-, 

The function <D(s,y) is the Fourier transform of $(x,y) . The 

differential equation for @(s,y) is given by, 

with the boundary conditions: . 

@and - ' @ + o  a s y + =  
bY 

(2.1 1) 

(2.1 2 )  

(2.13) 

(2.14) 

- 
U(x) -=< % <  - 1  I I I 
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The solution is easily found to be: 

(2.16) 

Applying the inversion formula , the potential function is 

formally given by: 

- I s  I (y-q(s)) i s h - 5 )  00 00 

e ds  ] d5 (2.17) 
CI 

2-n Is1 
-00 

Although the solution is exact, the above equation is not 

useful from a computational perspective. However a simplified 

expression is found by expanding the exponential in a Taylor 

series over the transform variable s. A term by term 

integration then yields the following approximate expressions: 
00 

I 

-00 
cx3 

The Kernel functions of the above integral equations, accurate 

to O(E*) where E=f/c, are given by: 

X-c K (x,y; 5) = 
X (%-5)2+(y-?l l2 

(2.18) 

(2.19) 
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Although, (2.1 8) and (2.1 9) represent approximate solutions in 

general, it can be shown that they are exact on the surface. 

Also, it should be noted that if q=O, and if the disturbance 

potential is set to zero in equation (2.15), we recover the usual 

thin airfoil equations. 

. It may be observed that the equations (2.1 8) are singular 

Fredholm integral equations of the second kind and their 

Kernels are of difference type with a Cauchy singularity. For 

example, the behavior of K x  is: Kx (x,y; 6 )  + f , as 5 + xo. 

The variation of f(5) in the Kernel function is continuous 

across the interval [-1,l ] exept at the leading edge. The 

treatement of the singularity condition at 6=x requires the 

use of the Cauchy principal values. Another important aspect is 

that the Fredholm integral equation must be solved in an 

iterative manner since f(6) contains a term b @ x  which is 

unknown. The solution of the equations (2.18) by means of 

various optimized quadrature techniques is discussed in the 

following section. 

2.4 Outline of the Sinaular tntearal Eauation Solution 

Procedu re 

We wish to solve the integral equation (2.18) on the 

surface of the airfoil with y = q(x). First we replace the 
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function f (x )  by its respective values along the x-axis 

upstream and downstream of the airfoil and on the surface of 

the airfoil. The resulting integral equation then becomes: 
-1 00 

The general procedure used in this calculation method is 

to represent the prescribed function f (x )  along the airfoil 

surface by a linear combination of basis functions, in this case, 

powers of x: 

f(x)= 2 a- xi - 1  < x <  1 
I i= 0 

I i=O 

Both functions have been tested, along with several other basis 

functions. The polynomial (2.21) yields better results and the 

remainder of this chapter will be devoted to computation 

methods using the polynomial (2.21). 

The coefficients ai are unknown and the function f (x )  is 

a polynomial of degree n. We solve for the coefficients ai from 

(2.20) 

(2.21 ) 

(2.22) 
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equation (2.20). These values will depend on the choice of the 

quadrature points x - and the degree of the power series. The 

integral operand in the airfoil integral equation is not a 

continuous function on [-1, 11 and the equation (2.20) is a 

J 

singular integral equation which can be solved using the Cauchy 

principal values on the interval [-I, 11 . Replacing f ( x )  by a 

power series, equation (2.20) may be written as: 
-1 00 

ax 71 -W x-5 7 1 ,  x-5 
(2.23) 

The last integral of the right hand side can be conveniently 

evaluated term by term by using the Cauchy principal values 

given in the appendix: 
1 

(2.24) 

Finally any term of degree i can be written as a function of the 

term of degree i-1 : 
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In equation (2.23), the coefficients ai are unknown and 

we define a set of n+l collocation points x - as shown in figure 

2.3, where the integral equation (2.23) is to be evaluated at 

each point. The basic integral (2.23) can be expressed at any 

point x - as a linear combination of the coefficients, ai . This 

coefficients are obtained by numerical integration and are a 

J 

J 

function of the geometry of the airfoil. Application of the 

above conditions gives a set of n+l linear equations for the n+l 

unknown values of ai. 

2.4.1 Numerical Solution for Svmmetrical Flow Field 

Consider first the case of a symmetrical airfoil at zero 

angle of attack. We see that the disturbance velocities U(x) 

and W(x)  are null. Inspection of (2.23) yields the expression: 

where li is the Cauchy integral of degree i, obtained from the 

integration of the basis functions. If we use the basis 

functions given by equation (2.21), and note that: 

(2.25) 

(2.26) 
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n=9 co l loca t ion  poin ts  

Figure 2.3 



U 

f ( x ) = ( l  +&a 
ax dx 

we obtain: 

Solving of QXu , and substituting into equation (2.26) yields: 

e 
i=O 

a [ + -  I 

i 

i 
X 

ax 

This equation applies at any x.- location between - 1  and +l. J 
Applying this equation at n+ 1 points yields n+ 1 equations for 

the n+l unknowns.The coefficients of ai are called mij and 

define a matrix of dimension n+l . The solution to the airfoil 

equations is finally obtained by inverting the matrix mi by 

Gaussian triangularization and the coefficients of the function 

f (x )  are given by: 

The computational time to solve the matrix by 

triangularization is less than 5 seconds using the CDC Dual 

Cyber System for a matrix of dimension no larger than 40. The 

computing time is independent of the geometry of the airfoil, 

24 

(2.27) 

(2.28) 

(2.29) 
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however it is dependent of the number of collocation points n. 

In order to reduce the round-off errors, we compute the matrix 

with double precision variables with 16 decimal accuracy 

which is useful for a matrix of dimension higher than 30 since 

the determinant of the matrix is a small number. The solution 

breaks down for n240. This difficulty is caused by small 

valuesin the determinant when n is large. For high values of n, 

quantities of similar values are substracted in the calculation 

of the determinant which results in a dangerous loss of 

accuracy in the value of the determinant. consequently, the 

accuracy decreases as the number of quadrature points 

increases. On the other hand,' using a small number of points 

may not be sufficient to define the shape of the body especially 

very near the leading or stagnation point. However, for 

sufficiently small n the use of single precision variables 

allows a quicker computing time and the single precision 

calculation gives satisfactory results. Finally the pressure 

distribution is obtained by substituting the values ai into the 

following expression: 

I i= 1 

25 

(2.30) 

(2.31 ) 
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2.4.2 Numerical Procedu re for Non-Svmmetrical Flow Field 

In addition to the solution of the basic potential flow 

problem over a symmetrical airfoil at zero angle of attack, the 

solution to the non-symmetrical flow field has been 

incorporated into the numerical method. For this case, the 

upwash U(x) and downwash W ( x )  are unknown. Consequently, 

both the upper and lower planes must be solved simultaneously 

and the solutions must be matched along the cut. A possible 

methodology is to use some initial guess for U(x) and W ( x )  and 

iterate until the change in the upwash and downwash is 

sufficiently small. The set of equations for this methodology 

are given below: 
-1 00 

(2.32) 

An alternative approach, and one which proves to be 

superior, is to use an approximate representation for U(x) and 
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W(x) and avoid the iteration procedure. This is accomplished 

by representing the actual airfoil by an "equivalent" Joukowsky 

airfoil of the same thickness for the purpose of obtaining U(x) 

and W(x)  only. This procedure yields an approximate 

representation for the upwash and downwash. An extensive 

numerical investigation showed that the solution to (2.32) and 

(2.33) is sufficiently insensitive to this approximation to 

justify its application. A lengthy analysis is necessary to 

describe the flow about a Joukowsky airfoil and the details of 

the calculation are given in appendix A. The result for the 

upwash and downwash disturbance velocities are given by the 

following expressions: - 
-2 

2 4 4  - 1  sina (2.34) 

2 - 

It should also be remembered that in the Joukowsky calculation 

the position of the leading edge is slighty different than -1 , 

for example it is equal to -1.01 4405 for a thickness of 12%. 
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= -  

The upwash and downwash integral terms of equations 

(2.32) and (2.33) are solved numerically by a simple 

trapezoidal rule. Boundary conditions on the airfoil surface are 

applied and the matrix elements are calculated using the same 

set of points distributed on the airfoil surface as for the 

symmetrical flow. Although there will be some additional 

terms in the calculation of the matrix elements, the numerical 

procedure remains the same. The matrix elements may be 

. 

written as: 

0. 
I 

I 

71 
i.i- - 1  

'J 71 
. -00 

+sina 

U 00 

A similar set of matrix elements applies for the lower plane. 

2.5 Aporoximation of the Surface Boundarv bv n Quadrature 

Points 

The integral equation described in the previous section is 

to be evaluated at a set of points x - distributed on the airfoil 

surface as shown in figure 2.3. Special attention should be 

J 

taken when choosing the quadrature points since the accuracy 

of the calculation is fully determined by the number and the 

(2.36) 
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distribution of the set of points. The quadrature of order n + l  

determines the number of unknown coefficients of the 

previously described function f (x).  

The spacing of the points must be small compared to the 

dimensions of the airfoil. In addition the local curvature of the 

airfoil should be considered in the point distribution. The 

proper distribution of the points over the airfoil surface will 

be largely a matter of experience and intuituion. As a first 

approach and one that proves to give satisfactory results, we 

use a set of equally spaced points along the x-axis of the 

airfoil. The first point is located at a distance d from the 

leading edge with succeding points spaced the same distance d. 

However two serious problems arise from the sharp corner at 

the trailing edge and from the large slope at the leading edge. 

These areas need to be defined by using a higher concentration 

of points. A higher order implementation which uses 

parabolically varying distances between points has been 

applied to the airfoil problem. A high concentration of points 

occurs at the leading and trailing edge and varies toward the 

central region of the airfoil where the distribution is sparce. 

However, for high order implementations, longer computing 

times will be required and loss of accuracy may occur from 

round-off errors in the matrix calculation. 

29 
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2.6 

2.6.1 lntroduct ion 

Solution of the Inverse Desian Problem 

This section discusses an attempt to design by analytic 

means a class of airfoils using a similar methodology as for 

the direct problem. The design and development of aerodynamic 

bodies is usually an empirical procedure, based primarily upon 

the designer's experience and employing trial and error 

techniques. For the design problem, analytic solutions are not 

as developed as for the direct problem since it is more 

difficult and it involves the solution of a free boundary value 

problem. However, it is of great importance since for a 

desirable pressure distribution we can obtain the corresponding 

body shape. 

In the literature, solutions to the design problem are 

mostly based on iteration techniques due to the absence of 

exact mathematical solutions for free boundary value problems. 

Marshall [I 01 presented a technique that removes the free 

boundary element by a perturbation procedure. An analytical 

solution, using a surface source distribution, is obtained in the 

form of integral equations. Nevertheless, the calculation 

method uses an initial guess and involves an iteration 

procedure. Zedan and Dalton [ l l ]  presented a method which 

employs an axial source-sink distribution, with constant 

element strength, to obtain a solution to the design problem. 
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The method proves to be accurate and converges, but it uses an 

iteration procedure and the method is also limited to bodies 

that do not present a sudden change in the slope of the meridian 

line. This present study does not requires any iteration and 

even less computational time is necessary than for the direct 

calculation. 

2.6.2 Mat hemat ical Form u latio n 

In this section, the basic equations for the design 

problem with uniform flow field are derived. In this study, the 

method uses the surface velocity instead of the pressure as the 

prescribed distribution. The design problem can be stated as: 

given a surface velocity, what is the body shape that would 

produce this velocity distribution? 

Again consider an inviscid incompressible flow over a 

two-dimensional airfoil. Equation (2.20) of the previous section 

remains applicable since the flow conditions remain the same: 

This equation is repeated for convenience. 
-1 

l r  1 

We are now faced with the problem of finding the shape 

(2.37) 
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prescribed by dq/dc given the surface velocity. As before, the 

function f (x )  may be expressed by a linear combination of 

powers of x. 

f (x)= 2 ai xi - 1 < x < l  
i= 0 

where f (x )  is given by: 
CI " 

f(x) = ( c o s a + * ) m -  sina = * 
3% 3% 3Y 

Equation (2.38) is evaluated at a set of n+l quadrature points, 

which give a set of n+l  linear equations solved by Gaussian 

elimination, to obtain the n+l  values ai. It should be noted that 

the x-disturbance velocity is actually the unknown at this point 

since the airfoil shape is still unknown. This component is 

determined by inserting the coefficients B i  in the integral 

equation (2.39). A similar procedure as the one used in the 

direct problem allows us to calculate the integrals of equation 

(2.37) by introducing the Cauchy principal values. 

In order to gain better accuracy, the x-disturbance 

velocity is evaluated at 200 points along the chord length and 

the slope on the airfoil surface is ultimately given by the 

equation: 

(2.38) 

(2.39) 



dx iL + cosa 
6 X  

- 1 < x < l  
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(2.40) 

The treatment of the inverse Gzsign problem has )een 

restricted to uniform flow at a zero degree of angle of attack 

which requires a less sophisticated approach since the location 

of the stagnation point is known. 

Results of both the design and analysis problem 

determined by the procedure outlined above are presented in the 

next section. 



CHAPTER 3 

RESULTS FOR THE ANALYSIS MODE 

3.1 lntroduct ion 

In this chapter, a series of numerical calculations for 

different airfoil geometries are presented. The results are 

validated by comparison to numerical solutions and analytical 

solutions when they exist. A code which was recently 

developed at NASA Langley [12] has been selected for purposes 

of verification of the present method. This code uses a 

spectral multigrid technique and has been extensively validated 

with finite difference schemes. In addition to this numerical 

verification, the present results are compared to analytical 

solutions for elliptical and Joukowski airfoils. 

Data are presented in terms of the pressure coefficient 

Cp, which is the quantity of usual aerodynamic interest. It is 

defined, in general, as: 

where p 

potential 

P-P, 
cp = 

1 
- P U m  2 

denotes 

flow it is 

cp = 1 

34 

incompressible 

U by : 
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NACA 001 2 airfoil and a 12% thick Joukowski airfoil. A 

description of the results follows. 

35 

The formulation of the problem, presented in Chapter 2, has 

been tested for the flow over a 12% thick elliptic airfoil, a 

3.2 lmolementation of the Quad rature Points 

’ Flows have been computed using both equally spaced 

points and a higher order implementation. In the first method, 

the distribution of the points is simply determined by using a 

constant value A for the distance between two consecutive 

points. It should be also noted that the distance bemeen the 

leading edge and the first collocation point as well as the 

distance between the last point and the trailing edge is equal 

to A. 

The second method uses a geometrically increasing grid. 

The following equation is applied to determine the spacing 

between two consecutive points: 

8xj = A rJ (3.3) 

The resulting distribution is shown in Figure 3.1. Moving away 

from the leading edge, each one-dimensional grid spacing is 

made r times larger until the center of the airfoil is reached. 

The parameters A and r are constant values and j denotes the 

jth interval. In order to evaluate the two unknown A and r, we 
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2 
c p = 1 -  (l+&) 

[ 1-&2[$]] 
where E denotes the thickness ratio. 

Figure 3.2 and figure 3.3 compare the analytical solution 

with the calculated solution using 20 and 24 points distributed 

on the airfoil surface. Figure 3.2 uses the geometrically 

increasing grid and Figure 3.3 uses equally spaced points. The 

free stream velocity is parallel to the x-axis of the ellipse and 

as can be seen, the two plots are graphically indistinguishable 

for N=24. Positions of the points are shown in figures 3.4 and 

3.5. Figure 3.2 and 3.3 are representative of several other 

calculations which were made using using a larger and smaller 

number of points and various types of grid points distributions. 

3.4 NACA 001 2 Airfoil 

The airfoil profile is given by the equation: 
2 3 

y = 1.2( .2969& - .12600x - .35160x +.2840x 

1 2 x 2 0  (3.7) 
4 -.lo1 50% ) 

Two calculated pressure distributions are shown for the NACA 

001 2 airfoil. One was calculated by using the methodology 

discussed in this study . The other distribution was obtained 

from a NASA computer code [8] and used as a comparison. As 
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illustrated in figures 3.6, 3.7 and 3.8, the two results are 

indistinguishable over the central region. Agreement with the 

NASA computer code can be improved at the trailing edge by 

adopting the variable grid scheme given by equation (3.3). This 

improvement can be seen by comparing figures 3.6 and 3.7 , but 

it should be noted that a slight loss of accuracy occurs in the 

region of the leading edge when using the geometrically 

increasing grid. Positions of the points are shown in figures 

3.9 and 3.1 0 for the distributions of figures 3.7 and 3.8. 

The calculations were repeated for different sets of 

quadrature points and the method has proven to give consistent 

results over a range of 15 to 30 points distributed over the 

airfoil surface. For N greater than approximatly 35, the 

accuracy begins to decrease due to the increasing matrix 

round-off error. A number of points smaller than 15 does not 

give an accurate description of the airfoil geometry. The 

calculated pressure coefficient exhibits a small repeated error 

very near the leading edge. This behavior can be explained by 

the difficulty that occurs when fitting a polynomial function 

over the region of large velocity gradients, e.g. the leading edge 

region. Slight changes in the locations and the number of the 

quadrature points can improve the accuracy of the curve. 

43 
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3.5 NACA 0012 at 4 and 10 Dearees Anale of Attach 

Figures 3.1 1, 3.12 and 3.13 show pressure distributions 

on the airfoil at 4 degrees angle of attack and figure 3.1 4 

shows calculated results for 10 degrees. Two curves are 

shown for each figure. One corresponds to the pressure 

distribution on the lower plane and the other is the pressure 

distribution on the upper plane. It should be remembered that 

the distributions for both the lower plane and the upper plane 

are independantly calculated and the solutions are matched 

along the x-axis upstream and downstream of the airfoil. 

In figure 3.1 I ,  a equally spaced grid has been used while 

in figures 3.1 2 to 3.1 9 a geometrically increasing grid has been 

used. In figure 3.1 1, the calculated distribution and the 

distribution obtained from the NASA code [9] are virtually 

identical. Again agreement with the NASA code is excellent in 

figures 3.1 2 and 3.1 3. Note that for a slight change of angle of 

attack from 0 to 4 degrees, t h e  maximum peak of t h e  pressure 

distribution experiences a change from approximately -0.5 to 

-1.5. 

3.1 5, the upper plane calculation gives reasonably accurate 

results, while the lower plane calculation gives almost 

identical results compared to the data [I 31. Positions of the 

collocation points are given by the variable grid scheme 

described in section 3.2 . The calculated Cp is slightly less 

For 10 degrees angle of attack shown in figures 3.1 4 and 
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than the reference data in most of the upper central plane 

region. It should be noted that the trailing and leading edge 

regions are in close agreement with the data [9]. 

3.6 Jo u kows ki Ai rfo i I 

Figure 3.1 6 shows the computed pressure distribution for 

the case of the symmetrical Joukowski airfoil in a steady flow 

at a zero degree angle of attack. A comparison is made with 

the calculated pressure distribution obtained by using a 

transformed plane and the Joukowski transformation. Details 

about the calculation procedure can be found in reference [14]. 

The polynomial surface pressure distribution deviates 

quite seriously over the region of the negative high pressure 

peak, toward the leading edge. The correlation is quite 

reasonable on the surface of the right half airfoil plane toward 

the trailing edge and the general trend of the Cp polynomial 

curve is in good agreement with the calculated curve. The main 

problem occurs in the region of the negative high pressure peak 

where the pressure distribution is overpredicted. Extensive 

calculations were made in an effort to improve the agreement. 

Different polynomial approximation schemes were used and the 

analytical solutions were carefully checked. In all cases, the 

present method consistently overpredicted the negative 

pressure peak. It has been concluded that this error is probably 
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due to the error introduced in the conformal mapping which 

produces a slightly displaced leading edge. As noted in section 

2.4.2, this error is approximatly 1 5% for the 12% thick 

Joukowski airfoil. It should be noted, that similar 

disagreements have been observed by other investigators [12]. 

Figures 3.1 7,  3.1 8 and 3.1 9 show pressure distribution 

calculations made for different grid point distributions. 

Positions of the points are shown in figures 3.20 and 3.21. An 

important aspect is that the computation procedure gives 

consistent results using different grid point distributions. 

The essential difference between a cusped trailing edge 

and a trailing edge of finite angle is evident from a comparison 

of figure 3.7 (NACA 001 2 airfoil) and figure 3.1 8 (Joukowski 

airfoil). The behavior of the flow at the trailing edge is 

accuratly calculated by the polynomial method as shown in 

figure 3.1 8 and the correlation for both the polynomial and 

theoretical curves agree well in the trailing edge region. 

The calculations for the flow about the symmetrical 

Joukowski airfoil of thickness 12% were repeatead at 4 and 10 

degrees of angle of attack. The calculated pressure 

distributions are compared with the analytic solution in 

figures 3.22 and 3.23. For the lower curve of figure 3.22, both 

pressure distributions are virtually identical. The largest 

disagreement occurs near the negative high pressure peak. 
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Nevertheless, it can be seen that the calculated pressure 

distribution is in close agreement with the theoritical 

distribution near the trailing edge. Slight changes in the 

locations of the collocation points do not significantly affect 

the shape of the polynomial curve. 

3.7 Inverse Desian Results 

The problem of solving for the body shape given the 

surface velocity distribution uses essentially the same 

approach as the direct problem. The calculation procedure is 

described in detail in chapter 2. However, the technique is not 

based on an iteration technique as most design methods found 

in the literature. 

The surface velocity distributions used were exact 

solutions for the cylinder, the elliptic airfoil and the 

Joukowski airfoil and a numerical approximation for the NACA 

001 2 airfoil. The calculated body shape is compared to the 

exact body to evaluate the accuracy of the method. 

Figures 3.24,3.25, 3.26 and 3.27 show the Y-component 

of the surface velocity for the 4 described airfoils. Figures 

3.28, 3.29, 3.30 and 3.31 show the calculated and exact shape 

for the 4 airfoils. Using 24 equally spaced quadrature points, 

both the calculated and the exact shape are indistinguishable 
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for the cylinder, the elliptic airfoil and the Joukowski airfoil. 

In the NACA 001 2 airfoil case, the agreements for both curves 

are quite good. The calculated shape is slightly underestimated 

in the region of larger thickness. however, we should 

remember that the surface velocity distribution for the NACA 

001 2 airfoil is not exact but obtained from a NASA code [I 21. 

The imprecision in the NASA data could cause the small but not 

negligible errror of the calculated shape. Another 

consideration is that the error occurs in the high pressure peak 

region which also presented an error for the direct calculation. 

The design calculation presents less error everywhere as 

compared to the direct calculation and particularly near the 

leading and trailing edge. 
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CHAPTER 4 

CORRECTION FACTOR FOR THE 

COMPRESSIBLE CALCULATION 

4.1 lntroduct ion 

This section presents an analysis for the problem of 

predicting the surface pressure distribution over a 

two-dimensional airfoil in a steady compressible potential 

flow. The flow field under consideration is inviscid, 

irrotational and the outer free stream velocity is limited to 

Mach numbers less than one. The main purpose of this section 

is to develop a numerical procedure that can be applied when 

the incompressible assumption is not valid. 

The solution procedure is similar to the incompressible 

flow calculation described in the preceding sections. The 

solution is reached in two steps. The initial pressure 

distribution is obtained by using the incompressible flow 

calculation and the solution is converted into the corresponding 

compressible solution by means of subsequent iterations which 

take into account the compressibility effect. The procedure is 

repeated until the solution converges. Details about the 

calculation method are fully described in the next sections. 

75 
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4.2 Potential calculation method for comrxessible flow 

The equations are substantially modified to take into 

account the compressibility factor. However, the calculation 

procedure remains the same. The problem is divided into an 

upper and lower plane as shown in Figure 2.2 and the 

mathematical problem will be solved independantly for the 

lower and upper plane. The outer flow field is described by the 

following nonlinear system of equations for the upper plane: 
2 u  V2 4" = M H (0) 

where, 

On the solid surface of the airfoil the total velocity has to 

satisfy the tangency condition: 

--oo < H <-a 

A similar set of equations can be derived for the lower half 

I 
I 
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plane. 

A successive approximation approach similar to the 

Rayleigh-Janzen method (2) will be adopted and we will iterate 

upon the solution for the compressible flow field. In order to 

apply this procedure, the maximum local Mach number will be 

restricted to values less than bne. Using this approach and 

denoting each iteration with the superscript (n), equation 4.1 

and 4.2 can be rewritten as shown below: 

(4.5) 

The advantage of this approach is that for each 

approximation, the equations are linear and we can exploit 

several analytical techniques. For each approximation, we can 

decompose the potential function into the known freestream 

value plus the disturbance due to the airfoil. This follows from 

the linearity of the differential equation, and does not imply a 

small disturbance approximation. 
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‘ I  We have: 

$(x,y) = $ +; (X,Y)  
00 

I 

U(x)= u + u ( X I  
00 

(4.9) 

L.) L.) 

Where U (x) and W (x) represent the unknown upstream 

and downstream influence of the airfoil. Substituting these 

expressions into equation 4.5 and 4.6 yields, 

U 
V* ; (4.10) 

H H 

(n) 
= f ( X I  

U 

y=s(x) 

(4.1 1) 

(4.12) 
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In equation 5.1 1, fu(x) is now given by: 

x> a 

It will be advantageous to rewrite H(x,y) as shown below, 

where, 

HT(x,y) = ?[ (u2-i)  v2g 1 

(4.13) 

(4.14) 

(4.15) 

u2= i$ + $2 
X Y  

(4.1 6) 

The system of equations given by 4.10 through 4.16 can 

now be solved in both the upper and lower planes. At each 

iteration, the solution is matched along the x-axis for Ixl>s. 

This constraint, along with the requirement given below, 

uniquely determines the flow field, - 
U(x) + 0 as 1x1 + 00 (4.17) 

(4.18) 
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(4.19) 

4.3 Iteration procedu re for the svmmetrical flow case 

In order to illustrate the salient feature of the method, 

the less complicated case of a symmetrical flow will be 

considered. For this case, the upper and lower problems 

uncouple, Le. , - I 

u (x) = w ( X I  = 0 (4.20) 

and we can drop the superscript (u). The basic, n=O, 

approximation corresponding to the incompressible case is 

given in chapter 2. The incompressible flow solution serves as 

the basic, n=O, solution to the compressible flow problem. To 

compute a second approximation, the following system must be 

solved. 

(4.21) 

In equation 4.21 we used the result V2+(l = 0, to eliminate the 

(4.22) 

(4.23) 

8 0  
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HTtl )(x,y) term. Taking the Fourier transform and eliminating 

the 0(e2) term, we find the following solution. 

(4.24) 

The real advantage of this approach is that the surface 

integral in equation 4.24 can be simplified to a line integral. 

This is accomplished as follows: Using the operator form of 

H,(e,q) , applying integration by parts, and invoking the 

Integral Mean Value Theorem to remove U2 , the surface 

integral reduces to, 

In this expression, K,-,(x,y;C,q) is the kernel function given in 

equation 4.24 and K,= aKD/ax. The advantage of this 

re-formulation now becomes apparent. Applying Green's 

theorem to the surface integral, we see that it becomes zero, 

and the final result becomes, 
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(4.25) 

Equation 4.25 represents a Fredholm integral equation which 

can be solved for bQ/bx.  The term in brackets represent the 

first compressibility correction to the basic (incompressible) 

flow solution. 

Successive approximations can now be determined 

immediately, once the differential system is stated. For 

example, the third approximation is given by, 

which becomes, 

m 2 -  m 

The associated surface boundary condition is 

(4.26) 

(4.27) 

(4.28) 
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and the solution is given by: 

(4.29) 

In equation 4.29, KH(K,y,t) is determined by: 

Higher approximation, i.e., 1114, can now be found by inspection, 

once the differencial equation is written. 

4.4 Numerical results 

A numerical result is presented for a symmetrical flow 

over the airfoil NACA 001 2. The calculation is validated by 

comparison with another numerical computation from the 

computer code developed at NASA Langley [12]. 

An abbreviated iteration scheme was adapted for solving 

the compressible flow. This scheme is different from the 

derived relation given by equation (4.29) which was used in 

reference [9]. It includes only the first correction term given 

by equation (4.25), however, an iteration in the computer 

(4.30) 
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program is performed on the integral equation until the 

solution reaches a converged value. The series of equations 

used for this approach are shown below for n13. 

i?!L = 2!L + "I f(S)' ax  ax 71 
-1 

2 2 

O0 K d c  (4.31) 9 
2 

1 

X 

3 )  
I (2) - ( 1  1 

ax  ax  7 1 J  
-1 

A subroutine was added to the code to compute the 

compressible flow from the results of the incompressible 

calculation. Results are presented in terms of the 

compressible pressure coefficient which is given by: 

c Y 

(4.34) 

Figure 4.1 shows the numerical solution using a 

polynomial of degree 20 with equally spaced points for a 

subsonic flow at M=.6 . The figure demonstrates the effect of 

the 3 successive iterations and also shows the convergence 

trend. The first iteration shows a considerable inaccuracy 
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compared to the NASA code solution and the second and third 

iterations are in good agreement with the NASA solution. It is 

found that convergence occurs after 3 iterative calculations 

and additional iterations do not achieve better convergence. 

Thirty seconds of computer time on the CDC Dual Cyber were 

required to produce the result shown in Figure 4.1. 
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CHAPTER 5 

CONCLUSIONS 

Based on the cases examined, the computer programs 

performed well for two-dimensional airfoils of arbitrary 

thickness at moderate angle of attack. All the results were 

very accurate with the exeption of the Joukowski airfoil. The 

problem may be caused by the presence of the cusped trailing 

edge which introduces an additional condition. More likely, it 

is due to the error introduced in the conformal mapping. Hess 

[I 51 encountered similar difficulties when calculating the 

surface pressure distribution for airfoils with very thin 

trailing edges using a surface singularity distributions method. 

Hess used an additional parabolic vorticity variation that 

provided a satisfactory solution for thin trailing-edge airfoils. 

Using a similar method, Zedan [I 11 solved the direct and inverse 

problems of potential flow around an axisymmetric body using 

an axial source distribution. However, Zedan's method also had 

difficulty when solving the flow around airfoils with sharp 

corners or sudden changes in slope. 

In this study, the polynomial method provided an 

efficient and satisfactory solution to two-dimensional flow 

problems for airfoils with finite trailing edge angles. 

The use of double precision variables has proven to be 

a7 
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useful and gives stable and consistent results. Accurate 

solutions for the surface pressure distribution can be obtained 

on most airfoils by using 20 to 30 collocation points, 

especially if the calculation is made using the geometrically 

increasing grid. A typical case using 24 collocation points 

requires less than 10 seconds of computer time. One of the 

most important features of the method is its ability to deal 

with airfoils of any shapes by adjusting the value of the slope 

in the subroutine of the main computer program. 
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APPENDIX A 

IDEAL FLOW OVER A JOUKOWSKI AIRFOIL 

UPWASH AND DOWNWASH VELOCITY CALCULATION 

A-1 lntroduct ion 

The upwash and downwash velocities given by the 

equations 2.31 and 2.32 are obtained by approximating the real 

airfoil with an equivalent Joukowski airfoil of the same 

thickness. The solution for the flow about the Joukowski 

ai rfoi I is accom pi is hed using the traditio nal transformed plan e 

and then the solution is shifted back into the real plane. The 

Joukowski method has the advantage that it determines the 

flow field anywhere in the real plane. In the present appendix 

we make an extensive study on the y-component of the velocity 

along the x-axis upstream and downstream of the airfoil as 

shown in figure A-I. 

A-2 Flow about Jou kowsk i airfoil 

Referring to figure A-2, we consider the transformation 

z=c+c2/(  from the transformed plane into the real plane, in 

which z=x+iy and 5 = k+iq are complex variables. The 

transformation maps the circle of radius ro centered at the 

origin of the ( plane into a Joukowski airfoil in the physical 

89 
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9 1  

plane, whose chord is sligtly greater than 2. In particular, the 

point {=1 is mapped into the sharp trailing edge of the airfoil. 

The shape of the airfoil is controlled by varying the two 

parameters m and 6 .  For the present calculation, the airfoil 

becomes a symmetrical airfoil when 6=f l .  The radius ro of the 

circle and the angle p shown in figure 1 can be expressed in 

terms of rn and 6. 

- 1  m sin6 
p = t a n  [ ] 

l - m  cos5 

These expressions will be used in the later analysis. The 

varialbies m and 6 which describe the displacement of the 

circle center in the { plane are directly related to the camber 

ratio and to the thickness ratio by the following relations: 
h 

C I 
=sin6 = 2 - 

where I is the total length of the chord of the airfoil. Finally 

we have a complete description of the airfoil parameters with 

c which describes the position where the circle in the < plane 

cuts the {-axis and we note that c is given by: 
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c 1  
1 4  
-I- 

Under the same transformation, a uniform flow in the 5 
plane which makes an angle 01 with the horizontal x-axis, maps 

into a uniform flow with the same orientation in the physical 

plane. Let F be the complex potential of the flow in the 6 
plane, the complex potential consists of a uniform flow about a 

cylinder with the proper circulation that satisfies the Kutta 

condition in the real plane. In the current notation, the 

potential is: 

where: 

In order to satisfy the Kutta condition, the rear stagnation 

point needs to be positionned at an angle a+p which yields the 

relation: 

r 
4 n r  U 

a sin(a+p) = 

0 

The complex velocity of the flow about the airfoil is then 

derived by the equation: 
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h 

dF W ( z )  = - 
dz 

the inverse of the Joukowski transformation is: 
I 

9 3  

(A.9) 

(A.10) 

We also have by definition W(z)=u-iu 

Inserting A.7 and A.10 into equation A.6, F can be written as: 

After taking the derivative of F and separating the real and 

imaginary part, the y-component of the velocity along the 

x-axis upstream and downstream of the airfoil is given by: 
c. 

(A.11) 

The mathematical problem for the equivalent Joukowski 

airfoil is now stated as follows: For a given airfoil with a 

specified thickness at a given angle of attack a ,  we have 

determined an approximation for the y-component of the 
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velocity upstream and downstream of the airfoil by using an 

equivalent Joukowski airfoil with same specified thickness and 

angle of attack. Note that the position of the leading edge of 

the described Joukowski airfoil is unknown. It may be 

calculated using the transformation and referring to figure 2, 

we have: 

The parameter, b is given by: 

!L= 1 + q cos(6-71) -cos61 
C C 

Using the definition of the transformation yields, 
1 z i71 

z = b e  +- 
i71 

b e  

The x-coordinate of the leading edge is obtained by taking the 

real part of A.15. For example, for a symmetrical Joukowski 

airfoil with a specified thickness of 12% , we have: 

"LE= -1.01 4405264 (A.16) 

(A.13) 

(A.14) 

(A.15) 
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APPENDIX B 

AI RFOl L INTEGRALS 

The following are the Cauchy principal values for x 2  < 1 

1 
1. J Z d ( = I n -  1 1 +x 

1 - x  
- 1  

1 
2. I A d 5 = x I n -  1+x - 2  

x-5 1 - x  
- 1  

1 
3. J & c = x [  xln- 1 - x  - 2  

x-5 l+x 1 
- 1  

1 1 n 
n-1 1 -  ( - 1 )  

5. - 1  J c d c = x j L d c -  x-5 - 1  x-5 n 

1 
d5 = 0 F 

6. 

- 1  1-5 ( x - 5 )  
1 

95 
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1 z 

1 
d t = - . r r x  x 2 + 1  I 2 1  

4 
lorn J+ 

- 1  1-6 ( x - 6 )  

1 c 

X 4 + 1 X 2 + 3  8 7F 1 2  
1 1 .  j 

- 1  1-5 ( x - 5 )  

1 

d c =  - f i x  
6 .  

1 2 *  I J+ 
- 1  1-5 ( x - 6 )  

1 1 

1 (3). . . 01-21 
2 (4 ) .  . . (n-1)  E[ 2 1- 

- 1  
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COHPUTATION OF POTENTIAL FLOY AROUNF T Y G - 9 I ~ E N S I O N A L  A I R F O I L S  
c USING A SINGULAR INTEGRAL HCTHOD: 
C DIRECT PROBLZfl 

C INPUT GUAN T I TILS: 
F 

POLYNOM OF DEGKEE Fi 
N=2 a E 

C 
C 
C 
c 
c 
E c 

KAI=P 
.1 

IRPLEflENTATION: I rEQURL Y SPACED POINTS 

SPOS=2 
2, kXPOkkNTIAL GUACRATURE 

c" 
c 
c 
L c POLINOH: IrPOYCR S E R I Z S  OF X 
C 2 ,SQUirRE R O O T  AND POKER SERIES O F  X 
C Z * A I R F O X L  POLYNOHIALS 

I P G L Y = I  - 
; XCOMP=I: INCOPlPRESSIELE 
C ~7 : co RPRE ssra LE 

rcowP=L 
c EXPONENTIAL R A i X O  

R=I*TD+C:  

ORIGINM PAGE IS 
OF POOR OTJ A T  'TV 



DETER=.;'rD+ C 
CALL-GAUSS(& ,Nz!DETER) 
Y R f T r ( 2 r Z ? t )  OrTER 
YR I TE ( 2 a 2 5 8 1 

C CO!IPUTES THT PELSSURE & I Z T R I E U T & C N  U S I N G  THE H A T R I X  COEFFICIENTS 
C PHUZ=X COHPONENT Of THE OlSTUhBANCE YLLOCITY 
c 

THEN 

c 
C CALCULATES THE COMPRESSIBILITY FACTOR 

ORIGINAL PAGE IS 
DE POoR QUALITY 



C . FOR A NON ZERO A N G L E  tlF ATTACKS CALCULATES THE 
C c LOYER PLANE D I S T R I B U T I O N  
L 

KA2=2 

C 
C 
C 

PL 0 T T I  NG SUE PR 0 6RA !4 
P 

L 
CALL PLOTS(? 9?94LPtOT) 
CPLL FACTOR C r 9 5  1 

ORIGINAL PAGE IS 
OF POOR QUGLITX 



DESIGNATION OF THE CURYES 
CALL p u n  t o  5 r5  -75 , 2 3 
CALL PLOT(o8a5075.23 

. s5.75 9. 
1 THEN 
'NUHERIC 

w,5.75,0 



SUePROGRAM THAT CALCULATES THE D E R I V A T I V E  OF THE A I R F O I L  



GAUSS-JORDAN REDUCTION 
c THIS  SUBPROGRAH FINGS THE SOLUTION VECTOR C O R R E S P O N D I N G  TO A 
c E T  OF N SIHULTANEOCS LINEAR IOUATIONS USING THE $AUSS-JORDbN c R r u U C T I O N  ALGORITHX YfTH T H E  D I A G O N A L  P I V O T  STRATLCYO 
C 

C 

C 

C 

6 

C 

8 

11 
3 

7 

2 c2 

00.0 

bU IU 
C ~ N  T I N ~ E  
YR I TE < 2 w 2 2  2) 
FORMATC/rWSFlALL PIVOT - H A T R I X  H A V  BE SINGUL 
STEP 

F@R P I V O T  0 0 0 - 0  

t .. 
-_ -. 
CO Fi T I NUE 
RETURN 
fND 

C 



C 

C 
I C  

C 
C 
c 
C 
C 

E 
~c 

C 

C 

C 

SUBPROGRAM THAT IMPLEHENTS THE L O C A T X N  O F  THE SET O F  QUADRATURE 
POINT& 

I F ( I P O S o E Q . 2 )  THEN 
NTE=N/2 
NLE =N -N T E 0 

END I F  

IF( IPOLYOEG.Z)  THEN 
C 

A ( I s  I ) = X  



4 

C 



R E T U R N  
END 

P 

L 
IF< 1 

RETURN 

c t et*+** ** *Ct *** t ** * ** ***t**ttt *+** t *t tt*** ** * *** * ** *tt * 
c++ t***t**ftt**t****t***~~*t*****~****~**tt*~**~~~****~*t***~ 
c 
C READ THE CP D I S T R I E U T I G N  FGR COMPARISON 

SU6ROUTINE C O H P  tN2rCPmX3 rKAImICOHP)  

01 HENSION 
f 9 
f 9 

DATA FOR N 
DATA XPl /3  

f 
t 
t 
t 
s 
t 
t 
t 

.997865. . 94285 

3 5 4 3  

91295 
76 0 91 
35212 
21779 
3 8  565 
21209 

4 



c '  
C 

C 

E 

C 

c 
C 

C 

DATA 
DATA s 

t 
f 
t 
f 
f 

DATA 
DATA 

s s 
s s 
t 
f 

FOR N 
XP4/- - I 

9 
7 
2 
9 
2 
0 
9 

1 c 
Q 



C 
C 

C 
C 

C 
C 

C 

C 
C 

C 
C 

t s 
t s s 

(AIRFOIL N A C A l S  AT 4 C E G R E E S  O F  ANGLE OF ATTACK) 

N2=64 
IF CKA IoEQo I > THEN 

I. . 

(AIRFOIL NACA.L?;2 A T  1: DEGREES OF ANGLE OF ATTACK) 
IF ( K A I o E Q - 4 )  THLN 
&=33 

48  CONTINUE 
END IF 
(AIRFOIL NACA2.2 AT C DKGREf O F  ANGLE 
IF<KAI.EQoZ rAWDo ICOt4PrEQo1)  THEN 
N2=41 
CP<N2+2)=-.3 

c *x3 +x3 

OF ATTACK)  



I 
I C  
I C  

C 
C 

C 
C 

C 

C 

4 3  

€ 3  

61 

€2 

€ Z  

64 

2 c5 

A I R F O I L  
3 THEN 

A T  - 

CP (I> 

D E G R E E  O F  ANGLE OF ATTACK) 

tJOUKOYSKI A I R F O I L  AT * DEGREES OF ANGLE. OF ATTACK) 
I F t K A I & Q m S )  THEN 
N2=4 c 4 

(JOUKOYSKI -A IRFOIL  AT 2 3 DEGRLES O F  ANGLE O F  ATTACK)  
IF<KAI.fQ.r) 
N2=4 54 

RETURN 
END 

L - 
C PHUl  =X-COHPONENT C F  THE DISTURBANCE VELOCZTI 
C C C O H L = P R t S S U R E  COEFF ICXENT 

" 
CALCULATES CPCLST) 
CALL CALCPC(XZgPHUlrCCOn~1 

c 
c. : CALCULATES CP(2ND) 

DO 1 I = l s Z 3 5  
P H U 2 t I 3 = P H U l ( I I  

C CALCULATES THE PoLmonrAL THAT FITS ~ Z T Y E E N  -1 AND +I 



C 
C 

C 

0 

. c  
C 

C 

C 

f 
4 
7 
w 

PCZRDI  

THAT F I T S  

AND +1 

CALCULATES CP FROM PHI 
3 I H E N S I O N  X l  <ZtS)9PHU2(235)  vCCOHl. I S  05) 
DOUBLE P R E C I S I O N  Z s X  

c" 
c 

V ZLO C I T Y  



I 
2 3  - 
c 

5 
p. 

*SNCiL(L 

1 

L 
C 

z PLOTTING ROUTINE 



4 



C 

C 

c 

EPJDIF 
I CONTINUE 

THEN 

RETURN 
END 

ORIGINAL PAGE IS 
OF POOR QUALITY 



P 

.ORIGINAE PAGE IS 
OF POOR QUALITY 

I 



C 

c 

ORIGINAL PAGE E3 
OF POOR Q U m  

C 

90 26 f = l r N  
X S = S N G L ( X >  
C A L L  CORR ( X S s V X S s X i s V X r  
C A L L  C D R R < X S s U X S , X l r U X s  
C A L L  H A T R l t k  I I X I U X S ~ V X  
X=X+ (2. U +  GI ~ L L  ( FLC A T  c 

26 C O N T I N U E  



C 
C 
C 

~t 

C 
C 

C 
e- 

sa 

v 

C O H P U T Z S  THE AIRFOIL P R O F I L E  USING THE POLYNOMIAL COEFFICIEhTS 

DO 

EN 

-2 
LL 
tL 
A 9  

X*  

6:' 

Yl(2>=.12 
I F  ( K A I EQo 
DO 6.': I=lr 

X O 1 (  I+I 
XS=XDL< 
I F ( K A P o  
I F t K A P ,  
GAIL C P  
F X=V X S /  
Y 1 t I+1) 

CONTINUE 
3 D  IF 

0 lFLOAT t23i 
CCRR ( XS, VX 
CORRtXSrUX 

uxz 9 vxs ,N. K 

0 K A L o E Q o 6  

oEQo6) THEN 

L - d 
C . .* *** * t t L. ** t t t t * t * t * * * ** ** * ** * t t f i  **e * * t t* i  * *t t ** t t 

k 
C 

C 

C O M P U T A T I O N  O F  THE T H E C R I T I C A L  PROFILE FOR C O f f P A R I S O N  

CALL THEO(NDsKA~rXGTrY;,RT, 

2C2 FORMATC/r 'Z ! lALL PIVOT - M A T R I X  H A Y  EE SINGULAR') 

2CI F O R R A T t I H  13F1?05) 
2 68 F O R M A T C / * f i O L Y N O H I A L  C O E F F I C I E N T S ' / 1  
2 C5 FORHAT(2F1 f o  63 
216 F O R M A T ( L 3 )  

2 63 F O R H A T t / ~ ' D E T i R  = . , C X r l i / , ' ~  = *.121r@NPLUSM= @,I211 

C 
1 c c** ~ * * * t * * * t * ~ * r * * * * ~ * * * * * ~ ~ * * * * ~ * * ~ ~  *ttt**+****t******* **e****** tttlt 

C 
C 
C PLOT OF T H E  PROFILE OF THE Y I N G  -I 





E -  
c CALCULATES U X S  BY INTERPOLATION U S I N G  U X ( 2 5 5 )  

50- i 
IF CX uxs= 

$ < X I  ( 
S ( X - x  
S < X l <  
f ( X - X  
s t x i <  (X- 

I)) 

1 

( X -  
I) ) 
(X-  
I) 3 

END 
C 
C c*t** 
C 

*t*tt+ t ************* 

AIRF~IL 



C 

C 
C 

C 
C 

GkUSS-JORDAN REDUCTIOX 
MIS  SUBPROGRAM F I N D S  T H - r p R  f SOLUTION VECTOR C O R R Z S P O N O I N G  TO A 
SET OF N SIHULTANEOUS L I r i -  EGUATIONS USING THE GAUSS-JORCAN 
REDUCTION ALGORITHff  Y I3H THE DIA6ONAL F I V O T  STRATEGY0 

SUBROUTINE SAUSI(A.N?DSTER) 
DOUELE P R Z C I S X O N  A t S c r E l ) s C E T Z F . , E P S  
EPS=1.0-13 
NP LUSW=N*.I 
0 0 . 0 0  b E G I N  E L I H I N A T I O N  PROCEDURE e o 0 0 0  
DETER=(i.D+Q) 
DO 9 K = l r N  
o o o o o  UPCgTE THE DETERKINANT VALUE 0 0 0 0 0  

D f T  E R =DETr R t A ( K rK1 
0 0 0 0 0  CHECK FOR P IVOT LLEHCPJT T O O  SHALL - 0 0 0 0  

1 CONTINUE 
RETURN 
END 



C .  
C 

C 

C 

C c 
C 

C 

C 

C .  

3 D I F  
IF(KAPcEQ.2)  THEN 

A ( I s l > = i m D + Z  
DO S J=L,pI 
A < I  J)=X+*<J-2) 

A( I 9 N+2 2 =O E LE t Y XS 3 
END SF 
RETURN 
ZND 
PRESSURE D I S T R I B U T I O N  

SUBROUTINE CPDR 1 < X S , X A . ~ X S  ,YXS,N,KAP> 
XHENSLON x a c x )  
IF(KAPmEQ.I)  THEN 
YXS =x A < 11 
DO I I=2& 

1 CONTINUE 
EN0 IF 

2 CONfINUE 

VXS=YXS+XA(: ) * tXS**C  I-; 1) 

SIRIGXNAL PAGE IS 
DE POOR QUALITY 

? - 

IF ( 

3 c  

KAPmEOm 
PI=3-14  
R L N T = A L  
UXS=XA< 
G O  Z J= 

F, XNT uxs= 
CONTINU 

I IF 
RETURN 
3 4  3 

C) TH 
15926 
O G ( ( 1  
1) +Ri 
,2tN 
=XS*R 
gxs+x - 


